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Abstract: Development and research in cryptography has
shown that RSA and Diffie-Hellman has is becoming more
and more unsafe and Elliptic curve Cryptography is becoming
a new trend in future for public key cryptosystem. The safety
level of ECC with small size key is same as that of earlier
cryptosystem with large size key. In this paper Nicolas
Meloni’s,2 2012 springer algorithm for addition of points on
elliptic curve is combined with multibase concept and set
generation given in “on-the-fly multi-base recoding for ecc
scalar multiplication without pre-computations” by thomas
chabrier and arnaud tisserand to improve the speed of the
scalar multiplication.In this paper by combining the multibase
and Zeckendorf concept number of multiplications and
squarings are reduced on the cost of addition. Comparative
analysis of proposed algorithm and some previous approaches
is also discussed in last section.

Index Terms— Elliptic curve, Public Key Cryptosystem,
Scalar Point multiplication, Zeckendorf representation

1 INTRODUCTION

Elliptic curve Cryptography was first introduced by Neal
Koblitz and Victor Miller independently in 1985 their
papers [1] and [2]. These years, research was done to
improve the efficiency of ECC by improving the efficiency
of scalar point multiplication which is main operation in
ECC. Scalar point multiplication means computing the
point nP=P+P+...+P (n times), where n is a positive integer
called scalar and P is a point on elliptic curve .Elliptic
Curve Cryptography has made the great progress in field of
cryptography and public key cryptosystems. In ECC we use
points on elliptic curve public keys [19]. It is based on
scalar point multiplication instead of multiplication of large
prime numbers.The key length of ECC is small as
compared to RSA for same level of security. In section 2
preliminaries are discussed. In section 3 some related work
is discussed. In section 4 proposed combined algorithm is
discussed and in section 5 comparisons of previous
approaches and proposed approach is discussed with tables
and figures.

2 PRELIMINERIES
2.1 Elliptic Curve
Elliptic Curve Cryptography (ECC) is based on a finite
group of points on an elliptic Curve. The equation for ellip-
tic curve over infinite fields [8][17][18].
y?=x3+ax+h.
2.2 Point Addition in Elliptic Curve
Point addition is defined as taking two points along a
curve E and computing where a line through them inter-
sects the curve. We use the negative of the intersection
point as the result of the addition [8][12].
The operation is denoted by P+Q=R

It can be calculated as:-

M=Yo-Y1/Xo-X;

Xg =M2-X1-X5

Y3 = -y1+M(X1-X3)

Where X3, Y3, X2,¥2 X3 ,y1 are coordinates of R,Q,P respec-
tively. According to formula cost of point addition is
2M+1S+11+6AS where M is multiplication S is squaring |
is inverse and AS is addition/subtraction.

2.3 Point Doubling in Elliptic Curve
Point doubling is similar to point addition, except we take
the tangent of a single point and find the intersection with
the tangent line. This is represented by R= 2P [8][12]
m:3X12 + a/2y1
X3 =M?-2X;
Y3=-Y1+M(X1-X3)
According to formula cost of point doubling is
5M+2S+11+4AS where M is multiplication S is squaring |
is inverse and AS is addition/subtraction.

2.4 Zeckendorf Representation
Zeckendorf theorem states that a number can be represent-
ed as sum of fibonacci numbers.
Example:- 16 is not in Fibonacci series.
16 can be written as 13+3 .Here 13 and 3 are in the fibo-
nacci series.
Example:-4
Fibonacci series 1,2,3
3<4 So 3 will be used. Set bit corresponding to 3 =1
Now 4-1 =1 is left
2>1 So bit corresponding to 2 set to 0
1=1 so bit corresponding to 1 set to 1
Representation of 4 will be = 101

3 BACKGROUND

Scalar point multiplication is the main operation in ECC.
Initially it was done by double and add algorithm. It was
using binary representation of number. For calculating kP
only doublings and additions were required. Eg for calcu-
lating 5P= ((2(2P)) +P) 2 doublings and 1 addition are re-
quired.

Number of additions required according to double and add
were n-1 where n is number of 1’s in binary representation
of scalar and number of doublings required were L-1 where
L is length of binary representation.

Various representations were introduced to reduce the cost
of scalar multiplication. Some of these are discussed in this
section.
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3.1 NAF Representation

We know that the binary representation of any number is
unique and consists of two digits 0 or 1 [3]. However, if we
use negative number too, in the representation then there
exist infinite number of representations for a number hav-
ing different lengths and density.Density means the number
of non - zero digits. Inclusion of negative digits in the rep-
resentation leads to requirement of inverse. In case of El-
liptic curves inversion of a point is very simple, i.e. just the
negation of the Y- co-ordinate, in case of primary field or
addition of X and Y coordinate in case of binary fields.
These operations are very low cost and can be neglected.
Out of all such representations, there exist exactly one rep-
resentation in which there are no consecutive non zero dig-
its [9]. This representation is known as the NAF representa-
tion and is important because it puts an upper bound on the
density of any I- bit scalar k. The Non Adjacent Form
(NAF) representation of a number consists of three digits 0,
1 or -1. The representation ensures that there cannot be any
two or more contiguous non zero digits in the representa-
tion. As an example, suppose k = 15, in the computation of
kP. Binary representation of (15)10 is (1111),, while if we
permit negative numbers then k can be represented as either
of these: (100-11),0r (10-111),, (1000-1),, and so on. Of
these forms, (1000-1), satisfies the condition that there are
no two consecutive non zero digits. Thus, it is a NAF rep-
resentation for k. It can be noticed that in this representa-
tion, four doubling and only 2 addition operations are re-
quired, while in case of binary representation, 3 doubling
and 4 addition operations would be required. Thus, NAF
representation can reduce the computational cost. [3]

3.2 w-NAF Representation

The NAF representation ensures that there can be no two
consecutive non zero digits. Or in other ways, NAF repre-
sentation ensures that in any two consecutive digits, there
can be at most one non- zero digits. This idea is further
extended in w-NAF representation [4][9] that ensures that
there can be at most one non zero digit in any consecutive
w digits in the representation. w-NAF representation is also
a radix-2 representation system and was given by Cohen,
Miyaji and Ono. Thus for NAF representation, width of the
window can be considered to be equal to 2. With increase
in w, the density of non- zero digits decreases, and thus, the
number of additions also decreases.
A width w-NAF representation uses the digit set B =
{0,+1,+£3,+5 +7,... +2"%1}
This requires 2" pre computed points.

3.3 Multibase Non-Adjacent Form (mbNAF)

The NAF representation ensures that there can be no two
consecutive non zero digits. This idea was further extended
using base set instead of using single base.

This further reduces the length of representation and densi-
ty of non-zero digits. This reduced the cost of scalar point
multiplication[5].

3.4 New Point Addition Formulae for ECC Appli-
cations by Nicolas Melonil,2
In this paper a new representation is used for representing a

number called Zeckendorf Representation. For calculating
kP Zeckendorf representation of k is calculated, then algo-
rithm discussed in reference [6] is used.

This algorithm is used in calculating intermediate multipli-
cation in proposed approach.

In proposed approach multibase concept [20] is combined
with this algorithm.

4 PROPOSED ALGORITHM
In proposed approach Zeckendorf representation is com-
bined with multibase concept.First by using Algorithm 1
Sets are generated [20]. After generation of sets point mul-
tiplication is computed by Algorithm 2. Algorithm 2 will
call two algorithms 2(a) and 2(b). Algorithm 2(a) is used to
obtain the Zeckendorf Representation and 2(b) is used to
calculate intermediate point multiplication using only point
addition [6].
Some Notations used:-
Bases the multi-base set S with n base elements (bs1, bs2,
bs3... bsn) (co-prime integers)
Set B this is union of terms in form of (d, b1, b2, b3....bn)
Where n is number of bases.

Algorithm 1
Generate_set (k,S)
Input : k ,base set S=(bs1,bs2,bs3... bsn)

Output: B

1 B=Null

2 While k>1

3 {

4. If(k%bs1=0 or k%hs2=0..... or k%bsn=0)
5. d=0

6 else

7 d=1k=k-1

8 for(j=1 to n)// n is number of bases
9. {

10. bj=0

11. while(k%Dbsj==0)

12. {

13. bj= bj+1

14, k=k/bj

15.

}
16. B=B union (d,b1,b2,...bn)}}
Example:- K=101 S=(2,3)

Iteration K Term
1 101 (1.2.0)
2 25 (1.3,1)

Table 1 Generation of terms

B={(1,2,0),(1,3,1)}

Algorithm 2

Computation of multiplication
Generation_multiplication (B,P)
Input:- Set B and Point P

Output : kP

1. Q=0

2. For each term in B
3. {
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4, Q=Q+d*P
5. Forj=1ton
6. { |
7. Arr[]=Zeckendorf(bsj ¥ )
8. P=fib_add(Arr,P)
9. }
0. }
11.  Q=Q+P
12.

Iteration | Term Q P

1 (1.2.0) P P=1P

2 (3.0 P P=8(4P)=32P

P=3*(32P)=96P
96P+5P=101P
Table-2 Computation of Multiplication

Algorithm 2(a)

Algorithm to obtain Zeckendrof Representation
Zeckendorf (intn)

Input: scalar n= (bs ")

Output: Zeckendorf representation of scalar n

Var j, s, F [1000] , bit[n] n is number of bases,sum

1. Initialize F[1]=1

2. F[2]=2, j=2

3. Sum=2s=1

4, While (F[j]+F[j-1]<=n and n>2)// Generating Fib-
onacci series upno number <=n
5

6. sum= F[j]+F[j-1]

7. =i+l

8 F[j]=sum

9. }

10. for( k=j;k>=1;)

11. {

12. If(n==F[K])

13. {

14. s=s+1

15. bit[s]=1

16. for(ss=k-1;ss>=1;ss--)
17. s=s+1 bit[s]=0

18. k=k-1
19. }

20. Else if(n>F[K])
21.

22. n=n-F[k]
23. s=s+1
24, bit[s]=1
25. k=k-1
26. }

27. Else

28. {

29. k=k-1
30. s=s+1

3L bit[s]=0}}
32. Return bit array

Example :-4
Representation of 4 will be = 101

Algorithm 2(b)

Fib_add(Zeckendorf representation of b,P)
Input : Zeckendorf representation of b and P
Output: bP

. For(i=n-2 to 0){

If bit[i]=1

(U,V)=(U+PV)

(U,V)=(U+V,U)

Else

(U V)=(U+V,U)

. Return U}

Above algorithm will require L-1+n-1 additions where L is
the length of representation and n is number of 1.

NogahkowhpE

5 COMPARISON
5.1 Comparative Analysis of proposed approach
with previous approaches
In this section proposed approach is compared with previ-
ous approaches. Here cost is computed for 10 examples.
The cost obtained for different examples is given in table
and cost comparison is shown by graph.

5.1.2 Comparative Analysis of NAF and proposed ap-
proach.

Sne | Value

Cost by using NAF
D=5M+25+11+4AS
A=IM+15+11+6AS5
3D+1A=1TM+7S+4I+18A5

Cost by using proposed
Base s21(2,3)
A=IM+15+11+6A5
JA=6M+35+31+18AS

1 [

15 AD+1 A=2IM+O5+5[+22AS BA=1IM+ES+6]+I6AS

i an SD+1A=2TM+115+61+26AS TA=1AM+TS+TI+A2AS

4 63 GD+1A=32M+155+81+30AS5 SA=1EM+ISHI]+54AS

5 101 TDHIA=4IM+1T5+101+44AS | 10A=20M~108+101+60A8

[ 563 ID+4A=SIM+225+1IT+60AS 16A=32M+165+161-06AS
1700 11 D+SA=6SM+2T75+16+T4AS | 18A=36M+185+18I=108A5

8 2222 11D+AA=6IM+265+15[+68A5 | 18A=36M+185+181+108AS

E] 3750 1ID+H6A=TIMH305+18T+B4AS | 18A=181+185-36M=108AS

10 11110 TAD+BA=E2M+345+20[+02A8 | JIA=J4M+228<22]+] 3IAS

Table- 3 Comparison between NAF and proposed approach
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Fig- 1 Comparison between NAF and proposed approach

The above graph is showing cost comparison between NAF
and proposed approach.

Horizontal axis is showing examples and vertical axis is
showing the cost.

Blue line is showing multiplication. Number of multiplica-
tion is decreasing from NAF to proposed approach. For
example number of multiplication at 101 NAF is 41M
which is decreased to 20 M at 101 Proposed. This decrease
is shown by negative slope of blue line.
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Similarly Red line is showing decrease in number of squar-
ing. For 101 NAF number of squaring is 17S which is de-
creased to 10S in 101 proposed.

Purple line is showing increase in number of addition and
subtraction. For 101 NAF number of addition and subtrac-
tion is 44AS which are increased to 60AS in 101 proposed.
Green line is showing trend in number of inverse. For 101
NAF number of inverse is 10l which is same as in pro-
posed. In some cases number of inverse is decreasing, in
some cases numbers of inverses is increasing and in some
cases number of inverse remain same.

So total decrease is 28 (21 in multiplication, 7 in squaring)

Total increase is 16 (16 in addition and subtraction)

Here for 28(total decrease) is large as compared to 16 (total
increase).

In most of the cases total decrease will be found large as
compared to total increase.

This decrease is based on the number of computations. In
some cases number of computations will increase but these
are additions and subtractions. Since addition and subtrac-
tion take small time as compared to multiplication in pro-
cessors, so this approach will remain effeicient in most of
cases.

5.1.3 Comparative Analysis of WNAF and proposed ap-
proach.

Here w is taken as 4. In case of w NAF some pre computed
multiplications are required. For window size w pre computed
entries will be {+1P, 2P, +3P...+.2"'P-1}.

So for w=4 Pre computed enteries will be {£1P, £2P, £3P, £5P,
+7P}

It will require 1D and 3Afor computation.
1D+3A=5M+2S+11+4AS+3(2M+1S+1I+6AS)
=11M+5S+41+22AS

Table-4 and fig-2 is showing cost without adding pre computa-
tion cost.

S | Value Cost without precomputation cost | Cost by using proposed

1o by using wNAF w=4 Base set (2.3)
D=3Mr25+11+4A8 A=IMT15+11+0AS
A=IM~15+11+0AS

1|15 4D+1A=22M+08+51+22A8 6A=12M+65+61+36A8

23 4D+1A=2IM+95+51+21A8 8A=16M+85+81+48AS

3 (30 SD+1A=2TMH118+61+26A8 TA=14M+7S+T1+42A8

418 6D+1A=32M+155+81+30A8 0A=18M+05+91+54A8

51101 SDr1A=2TMr118+61+20A8 10A=20M~+105+101+60A8

6 | 563 9D+2A=49M+205+111+48A8 16A=32M+165+161+96A8

7 11700 11D+2A=50M+245+131+56A8 | I8A=36M+185+181+108AS

8 | 2112 11D+2A=50M+243+131+56A8 | 18A=36M+185+181+108A8

9 13750 ID+3A=5IM+215+121+54A8 18A=181+185+36M+108AS

10 | 11110 14D3A=TOMA31S+17I+74AS | 2ZA=44M+125+221+132A8

Table-4 Comparison between w NAF without pre computation cost and proposed approach
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Fig: 2 Comparizon between wNAF without precomputation and proposed
approach

The above graph is showing cost comparison between
WNAF and proposed approach without considering pre com-
putation cost.

Horizontal axis is showing examples and vertical axis is
showing the cost.

In case of wNAF if pre computation cost is not consid-
ered then its number of computations came out small in
many cases as compared to proposed approach. But if pre
computed cost is considered it will be high. However the
computations which are increased are due to addition and
subtractions in place of multiplications. Since multiplication
takes more time as compared to addition and subtraction, so
the proposed approach will remain better in most of the
cases.

Since pre computed cost is only one time cost of a system.
If enough storage is available w NAF can be preferred over
other approaches

5.1.4 Comparative Analysis of mbNAF and proposed
approach

In mbNAF we use a base set.Here Base set (2,3) is used.

S | Value Cost using mbNAF Base set (2.3) | Cost by using proposed
no D=SM+25+11+4A8 Base set(2,3)
A=IM+15+11+6AS A=IM+15+11+6AS

1.6 2DHIA=12MH55+31+ 14AS JA=6M+ISH3I+18AS

12 11 3D+2A=19M+85+51+24A8 6A=12M+65+61+36A8
3 130 AD+2A=24M+108+61+28A8 TA=14MHTS+TI+42A8
4 |63 6D+3A=36M155+01+41A8 9A=18M+95+01+54A8
5 1101 6D+2A=34M+145+81+36A8 10A=20M+108+101+60AS
6 | 563 SD+4A=4SM+205+12[+56A8 16A=3IM+165+161+96A3
7 1700 10D+4A=62M+245+141+64AS 18A=36M+185+181+108A8
3 |02 10D+5A=60M+215+151+70AS 18A=36M+185+181+108A8
9 13750 10D+6A=62M+265+161+76AS 18A=181+185+36M+108A8
10 | 11110 13D+5A=T5M+315+181+82A8 22A=MM+2258+221+132A5

Table- SComparison of mbNAF and proposed approach
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Fig: 3 Comparison between mbNAF and proposed approach

The above graph is showing cost comparison between
mbNAF and proposed approach.

For example for 63 total decrease is 24 (18 in multiplica-
tion, 6 in squarings)

Total increase is 12(14 in addition and subtraction)

Here for 24 (total decrease) is large as compared to 12 (to-
tal increase).

This decrease in proposed approach is based on the number
of computations. In some cases number of computations in
proposed approach will increase but these are additions and
subtractions. Since addition and subtraction take small time
as compared to multiplication in processors, so this ap-
proach will remain efficient in most of cases.

5.1.4 Comparison of proposed approach and Zecken-
dorf without multibase concept

In this section proposed approach is compared with Zecken-
dorf without multibase concept.

The algorithm used in proposed approach for calculating
intermediate multiplication is used for finding scalar point
multiplication in [6].

In table 6 Comparison between Zeckendorf without multi-
base concept and proposed approach is shown.

In fig-4 Comparison is shown in graphical form.

5 [Valus Costusing simple Total Cost byusing Total

no zackendorf without Computations proposed Computations
mulibaze Base =&t (2,3,3)
A=INF1S+1H6AS A=IMEFIS+HIIH6

AS

T [& JA=SNFISHERIEA [ 40 3A=6MESS 31+ | 50

5 1848
I3 6A=I1INE-65+6F36 |60 SA=10MESS+3T | 50

2 AS 3048

3 30 8A=16NMH-85+8H-48 80 6A=12NH63+61 | 60
AS +36AS

4 [153 1I2A=24NFI2S+H10F | 120 10A=20RMF05+ | 100
T2AS 10I+60AS

3 [235 13A=26ME-135+13F | 130 12A=24NEFI25+ | 120
T8AS 121+72A%

6 [ 610 13A=26MFISS5+I5F | 150 TTA=DIAFH15+ [ 110
T8AS 11I+66AS

T O[1543 18A=36MF185+18F | 180 16A=32NF165+ | 160
108AS 161+96A5

8 (1700 17A=34MNELTSHLTE | 170 16A=32MEF165+ | 160
102A5S 16I+96AS

9 3533 DA=UINFIISH0F | 220 20A=I0MF205+ | 200
132A8 20I+120A%8

10 [ 11110 23A=460ME235+23F | 230 22A=4ANE225+ [ 220
92AS 22T+132A8

Table-6 Comparison between zeckendorf without multibase and
proposed approach
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Fig-4 Comparison of proposed with Zeckendorf without multibase

The above graph is showing the decrease in number of com-
putations. If we use simple zeckendorf representation with-
out multibase concept number of computations will be large.
However in some cases number of computations came out to
be large for proposed approach. This is because of less opti-
mal base set. This is limitation of proposed approach that it is
using random base set due to which sometime cost may in-
crease.

5.2 Comparison of single double and multibase
versions of proposed approach

In this section computations are computed for single double
and multibase. For single base base 2 is used,for double
base base set (2,3) is used and for multibase base set (2,3,5)

is used.

8 WValue Total computations | Total Computations | Total

ne using base 2 using base set(2.3) | Computations
using base set
(2.3.3)

1 43 100 o0 80

2 : 90 110 100 90

3 63 100 o0 20

4 139 130 120 110

3 246 130 120 110

6 [2223 210 130 170

7 3730 200 180 180

] 11110 230 220 200

Table-7 Comparison between single double and multibase

From the table we can analyze that number of computa-
tions are decreasing from single to double base and double to
triple base. But in some cases like 3750 number of computa-
tions are same for double and triple base. This is due to limi-
tation of the proposed approach that base set is not optimal.

6 CONCLUSION AND FUTURE WORK

The proposed approach is using Zeckendorf Representation
of number and multibase concept.

It removes the doublings completely. It has no overhead of
precomputed enteries.

This decreases the number of multiplications and squarings
in most of cases. The limitation of proposed approach is
that base set selected is predefined due to which sometimes
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cost get increased as compared to previous approach. It can
be extended to choose the base set according to the scalar
whose point multiplication needs to be calculated such that
base set is optimized and number of precomputations can
be further reduced.
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